

Please write clearly in block capitals.				
Centre number	Candidate number			
Surname				
Forename(s)				
Candidate signature				

GCSE MATHEMATICS

H	ia	her	Т	ier
•••	· J		•	

Paper 3 Calculator

Tuesday 13 June 2017

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

• In all calculations, show clearly how you work out your answer.

IB/M/Jun17/E6

Please note that these worked solutions have neither been provided nor approved by AQA and may not necessarily constitute the only possible solutions. Please refer to the original mark schemes for full guidance.

Any writing in blue indicates what must be written in order to answer the questions and get the marks. The worked solutions have been designed to show the smallest amount of work which needs to be done to answer the question.

Anything written in green in a cloud doesn't have to be written in the exam.

Anything written in orange in a rectangle doesn't have to be written in the exam and is there to show what should be put into a calculator or measured using a ruler or protractor.

If you find any mistakes or have any requests or suggestions, please send an email to curtis@cgmaths.co.uk

9	There are 720 boys and 700 girls in a school.	
	The probability that a boy chosen at random studies French is $\frac{2}{3}$	
	The probability that a girl chosen at random studies French is $\frac{3}{5}$	
9 (a)	Work out the number of students in the school who study French. $\frac{2}{3} \times 720 + \frac{3}{5} \times 700$ $\frac{2/3 \text{ of the 720 boys and}}{3/5 \text{ of the 700 girls.}}$ Answer 900	
9 (b)	Work out the probability that a student chosen at random from the whole school 2 marks $\frac{720 + 700 = 1420}{1420 - 900 = 520}$ $\frac{520 \text{ students in the school}}{1420 - 900 = 520}$ $\frac{520 \text{ students do not}}{1420}$ $\frac{520}{1420}$	
9 (b)	$\frac{5}{3} \times 720 + 5 \times 700}$ $\frac{2}{3} \text{ of the 720 boys and}}{3} \text{ of the 720 boys and}}$ $\frac{2}{3} \text{ of the 720 boys and}}{3} \text{ of the 700 girls.}}$ Work out the probability that a student chosen at random from the whole school dives not study French.} $\frac{720 + 700 = 1420}{1420 - 900 = 520} \text{ Total number of students in the school}}$ $\frac{520 \text{ students do not}}{520 \text{ students do not}}$ Answer $\frac{520}{1420} \text{ or total rench.}$ $\frac{520}{1420} \text{ or total rench.}$	■

.CG Maths.

Turn over ►

.CG Maths.

.CG Maths.

Do not write

	value of a new car is £18,000
U The	value of the car decreases by
2	25% in the first year
- 1	2% in each of the next 4 years
Wor	k out the value of the car after 5 years.
	[3 marks
18	$S \cap O \cap X O \cdot ZS \times O \cdot SS^{\top}$
((100% - 25% - 75%)
	75% of 18000 = 18000 × 0.75
	2
	F 100% - 12% = 88% Reducing by 88% four times can be calculated
(by multiplying by 0.88 four times; this is
	multiplying by 0.88 ⁴ .
	8095 89
	Turn over for the next question

17 Liam drives his car.		
		He drives the first 9 miles in

He drives the first 9 miles in 9 minutes. He then drives at an average speed of 70 miles per hour for 1 hour 36 minutes.

1 mile per minute is 60 miles per hour.

He finds this information about his car.

Average speed	Miles travelled per gallon
65 miles per hour or less	50
More than 65 miles per hour	40

Use the information to show that his car uses less than 3 gallons of petrol for the drive.

	[5 marks]
	$d = St = 70 \times \left(1 + \frac{36}{60}\right) = 112$ (112 miles) travelled.
	9 $112 = 2.98$ (1 hour add 36 out of 60 minutes.) This converts the time into hours.
	So 40 2.98 is less than 3 gallons.
Flf 50 miles 9/50 gallor	can be done with one gallon, ns would be used for 9 miles. This expresses how many lots of 40 miles were done and hence how many gallons were used.

18 Nick sketches the graph of $y = 0.5^x$ for $x \ge 0$

15

Make **one** criticism of his sketch.

 $O.S^{\circ} = 1$

Turn over for the next question

6

[1 mark]

.CG Maths.

Do not write

20 This sign shows when a lift is safe to use. Total mass of people must be 450 kg or less Ben and some other people are in the lift. Their total mass is 525 kg to the nearest 5 kg Ben gets out. He has a mass of 78 kg to the nearest kg Is the lift now safe to use? This is acceptable as the You must show your working. mass can be equal to 450kg. [4 marks] SZ7.S - 77.S = 4SCIn the worst-case scenario, the total mass of the people in the lift would be as high as possible and Ben having the lowest mass possible. This leads to the greatest possible mass being left in the lift. 525 + 5/2 = 527.578 - 1/2 = 77.5Adding or subtracting half of the resolution of the measurement calculates the bounds. es Answer Turn over for the next question

22	Work out an expression for the n th term of the quadratic sequence	
۲	First difference then 2 17 40 71 second difference. 3 Give your answer in the form $an^2 + bn + c$ where a b and c are constants	
	[3 marks]	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	}
	Working out the linear sequence which needs to be added to get the original sequence. It must involve $3n$ as it goes up by 3. The Oth term would be -5 so it must be $3n - 5$	
	Answer $4n^2 + 3n - 5$	
	Turn over for the next question	
		4

25 (b)	Work out the size of angle <i>ECM</i> .		
	$\begin{array}{c} \begin{array}{c} & & & & \\ S & H & C & H & T & A \end{array} \\ \hline & & & \\ \hline \end{array} \end{array} \\ \hline & & & & \\ \hline \end{array} \end{array} \\ $		
There a tells u give previo	re two ticks on TOA so this formula triangle can be used. Covering over T, tan of the angle, is that (tan of the angle) = opposite/adjacent. Rearranging to make the angle the subject is angle = tan ⁻¹ (opposite/adjacent). The opposite, side EM, is 15cm as was shown in the bus question. The adjacent, side MC, is found using Pythagoras' Theorem on triangle ECB. $a^2 + b^2 = c^2$ $c = \sqrt{a^2 + b^2}$ a is 8cm as MB is half of AB. b is 30cm as it is side BC.		
	Answer 25.8 degrees		
Turn over for the next question			

Г

Do not write outside the box

The area of the L-shape is 65 cm ²	Adding the area of the	
Work out the value of <i>x</i> .	rectangles together gives 65.	
9x + (10 - x)(3x + 1)	[6 marks] = 65 Expanding the brackets.	
$7x + 30x + 10 - 3x^{2} - x$ - $3x^{2} + 38x - 55 = 0$	Collecting like terms and subtracting 65 both sides to bring it into the quadratic	from form.
$\infty = \frac{-38 \pm \sqrt{38^2 - 4 \times -3 \times -55}}{2 \times -3}$	Solving using the quadratic formula. a = -3, b = 38 and c = -55	
$\chi = \frac{s}{3}$ χ	$\begin{array}{c c} 10 - x \text{ gives a negative length } \\ and this is not possible. \end{array}$	
Answer	3	[]
Turn over for the ne	ext question	6

Prove that $x^2 + x + 1$ is always positive. 27 [3 marks] $\frac{\left(\chi+\frac{1}{z}\right)^2+\left|-\left(\frac{1}{z}\right)^2+\right|}{\left(\frac{1}{z}\right)^2}$ Completing the square finds the turning point (in this case the $(x+\frac{1}{2})^{2}+\frac{3}{4}$ minimum point) of a quadratic. Minimum Value is = The lowest the squared bracket can be is 0 as any positive or negative number squared gives a positive number. 0 + 3/4 = 3/4END OF QUESTIONS .CG Maths.